翻訳と辞書
Words near each other
・ Choqa-ye Sefid
・ Choqabdar
・ Choqamaran-e Bargur
・ Choqapukeh
・ Choqapur Aliabad
・ Choqazard-e Chupankareh
・ Choqeh-ye Sorkh-e Bahram Beygi
・ Choqluy
・ Choqluy-e Olya
・ Choqluy-e Sofla
・ Choque de trenes
・ Choque-Rei
・ Choquequirao
・ Choquet
・ Choquet game
Choquet integral
・ Choquet theory
・ Choquette
・ Choquette (avocado)
・ Choquette (surname)
・ Choquette Hot Springs Provincial Park
・ Choquette River
・ Choqueuse-les-Bénards
・ Choqueyapu River
・ Choqur Chah
・ Choqyurt
・ Chor Aur Chaand
・ Chor Bazaar
・ Chor Boogie
・ Chor Chee Heung


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Choquet integral : ウィキペディア英語版
Choquet integral
A Choquet integral is a subadditive or superadditive integral created by the French mathematician Gustave Choquet in 1953. It was initially used in statistical mechanics and potential theory, but found its way into decision theory in the 1980s, where it is used as a way of measuring the expected utility of an uncertain event. It is applied specifically to membership functions and capacities. In imprecise probability theory, the Choquet integral is also used to calculate the lower expectation induced by a 2-monotone lower probability, or the upper expectation induced by a 2-alternating upper probability.
Using the Choquet integral to denote the expected utility of belief functions measured with capacities is a way to reconcile the Ellsberg paradox and the Allais paradox.〔Sriboonchita, S., Wong, W. K., Dhompongsa, S., & Nguyen, H. T. (2010). Stochastic dominance and applications to finance, risk and economics. CRC Press.〕
==Definition==
The following notation is used:
* S - a set.
* \mathcal - a collection of subsets of S.
* f : S\to \mathbb - a function.
* \nu : \mathcal\to \mathbb^+ - a monotone set function.
Assume that f is measurable with respect to \nu, that is
:\forall x\in\mathbb\colon \\in\mathcal
Then the Choquet integral of f with respect to \nu is defined by:
:
(C)\int f d\nu :=
\int_^0
(\nu (\)-\nu(S))\, dx
+
\int^\infty_0
\nu (\)\, dx

where the integrals on the right-hand side are the usual Riemann integral (the integrands are integrable because they are monotone in x).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Choquet integral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.